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ABSTRACT The H1N1 influenza virus responsible for the most recent pandemic in
2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the
previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A
viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm
strains between 2009 and 2017, regardless of the season, and findings were not cor-
related with pig density. From these isolates, 17 whole-genome sequences were ob-
tained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in
order to perform spatial and temporal analyses of genetic diversity and to compare
evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following
mutation accumulation and fixation over time, phylogenetic analyses revealed for
the first time the divergence of a swine-specific genogroup within the H1N1pdm lin-
eage. The divergence is thought to have occurred around 2011, although this was
demonstrated only through strains isolated in 2015 to 2016 in the southern half of
France. To date, these H1N1pdm swine strains have not been related to any in-
creased virulence in swine herds and have not exhibited any antigenic drift com-
pared to seasonal human strains. However, further monitoring is encouraged, as di-
verging evolutionary patterns in these two species, i.e., swine and humans, may lead
to the emergence of viruses with a potentially higher risk to both animal and hu-
man health.

IMPORTANCE Pigs are a “mixing vessel” for influenza A viruses (IAVs) because of
their ability to be infected by avian and human IAVs and their propensity to facili-
tate viral genomic reassortment events. Also, as IAVs may evolve differently in swine
and humans, pigs can become a reservoir for old human strains against which the
human population has become immunologically naive. Thus, viruses from the novel
swine-specific H1N1pdm genogroup may continue to diverge from seasonal
H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the
emergence of viruses that would not be covered by human vaccines and/or swine
vaccines based on antigens closely related to the original H1N1pdm virus. This dis-
covery confirms the importance of encouraging swine IAV monitoring because
H1N1pdm swine viruses could carry an increased risk to both human and swine
health in the future as a whole H1N1pdm virus or gene provider in subsequent reas-
sortant viruses.
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Influenza A viruses (IAVs) belong to the Orthomyxoviridae family. Their genome
consists of eight segments of negative-sense single-stranded RNA, encoding 11 or 12

proteins: the polymerases PB2, PB1 (sometimes PB1-F2), PA, and PA-X; the hemagglu-
tinin (HA); the nucleoprotein (NP); the neuraminidase (NA); the matrix proteins M1 and
M2; and the nonstructural proteins NS1 and NS2 (also named NEP) (1). Several viral
subtypes are characterized by the two surface glycoproteins, HA and NA. To date, 18
HAs and 11 NAs have been described (2, 3). Although wild aquatic birds are considered
the natural reservoir host, IAVs can infect a wide range of domestic birds and mammals,
occasionally giving rise to severe outbreaks in animal husbandry and to seasonal
epidemics in humans (4). Host switch events are not rare, and some of them have
resulted in host-adapted lineages and sometimes in the development of pandemics (5).

In April 2009, a novel genotype of H1N1 virus spread in the human population,
causing the first influenza pandemic of the 21st century (6, 7). This pandemic H1N1
virus (H1N1pdm) has a unique genome that combines gene segments originating from
swine IAVs (swIAVs), i.e., two segments (encoding M and NA) derived from the “Eurasian
avian-like swine H1N1 lineage” (H1avN1) and six other segments (encoding PB2, PB1,
PA, HA, NP, and NS) descending from a North American triple-reassortant swIAV (6).
This original combination of gene segments suggested that H1N1pdm was most
probably generated in swine, even though it was not detected in pigs before it
emerged in humans (8–10). Following the pandemic, H1N1pdm replaced the previous
H1N1 virus that had been circulating in humans for years, becoming the novel seasonal
human H1N1 virus cocirculating with H3N2 and influenza B viruses (11). In 2009, one
month after the beginning of the pandemic, the first nonhuman case was reported in
a swine herd in Canada (12). It was followed by many outbreaks in pigs worldwide that
led to the establishment of a novel enzootic swIAV in almost all pig populations
(13–16). In addition, other human-to-animal transmissions were sporadically reported
in breeding turkeys, domestic cats, and pet ferrets (17–21).

Following the spread of the H1N1pdm virus to swine, novel reassortant viruses
originating from previous enzootic swIAVs of the H1N1, H3N2, or H1N2 subtype and
exhibiting one or several H1N1pdm genomic segments were identified worldwide (14,
22, 23). Most of them were not associated with very severe illness in swine, but new
gene combinations may lead to the emergence of viruses exhibiting higher pathoge-
nicity and/or increased interspecies transmission potential, as illustrated by cases
reported in minks and humans (24–27) as well as by reverse genetic studies and
experimental infections in various animal models (28–30). Moreover, once present in
pigs, human-derived IAVs continue to evolve, in terms of their antigens, differently than
in humans, resulting in lineages that could pose a novel risk to public health because
they are no longer similar to contemporary human flu strains (31).

In France, the first H1N1pdm animal case was a domestic cat infection that occurred
in November 2009, and outbreaks were then reported in pig herds. In this study, we
investigated the genetic and antigenic properties of H1N1pdm isolates obtained from
pigs in France from 2010 to 2017. We compared their genetic diversity to those of
current H1N1pdm viruses responsible for seasonal influenza in humans in order to
evaluate potential switches between hosts and/or divergent evolutionary patterns in
both species. While most swine strains were found to be similar to seasonal human
H1N1pdm strains at the nucleotide level, we highlight for the first time a new phylo-
genetic group within the H1N1pdm lineage which comprises only viruses isolated in
pigs in France in 2015 to 2016. The mutations introduced at the amino acid level were
compared with data from the literature to determine whether they could be assigned
to host-specific molecular markers or might be related to any phenotypic or functional
virus property in pigs. We also examined their zoonotic risk, searching for markers
potentially related to interspecies transmission and evaluating the antigenic drift
generated by accumulated mutations through cross-hemagglutination inhibition (HI)
assays.
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RESULTS
H1N1pdm swine viruses were detected throughout the years of study, and

their distribution in France did not correlate with pig density. From 2009 to 2017,
the National Reference Laboratory (NRL) identified 1,016 batches of pigs reared in
mainland France that tested positive for the IAV M gene, among which 44 (4.33%) were
found positive by reverse transcription-PCRs (RT-PCRs) targeting specifically both the
H1pdm and the N1pdm segments of the H1N1pdm virus (Table 1). During this
surveillance period, no batch tested positive for only H1pdm or N1pdm genes, indi-
cating that there was no reassortant virus bearing the H1pdm or N1pdm gene together
with an NA or HA gene from another IAV lineage, respectively. However, HA and/or NA
genes from other enzootic European swIAV lineages were concurrently detected in four
H1N1pdm-positive herds, illustrating cocirculation events (data not shown).

The H1N1pdm swine viruses were detected throughout the years, in contrast to
H1N1pdm and other seasonal IAVs in humans, which occurred during winter (Fig. 1).
Whereas a drop in the number of H1N1pdm-positive cases was observed in 2017, the
annual relative frequency of swine H1N1pdm increased gradually from 2010 to 2016,
reaching 12.21% of the swIAVs subtyped in 2016 (Table 1).

Most of the 44 H1N1pdm swine viruses were detected in distinct pig herds distrib-
uted throughout mainland France (Fig. 2). Strains A/swine/Sarthe/0255/2010 (A/Sw/
Sarthe/0255/2010) and A/Sw/Sarthe/0262/2010 were isolated in a single herd in ani-
mals in two different physiological states and sampled 5 days apart (Table 2). Also,
strains A/Sw/France/18-120158/2012 and A/Sw/France/18-120333/2012 were isolated
in the same herd but in postweaned piglets sampled 5 months apart. In each French
administrative area (department), the number of H1N1pdm viruses detected during the

TABLE 1 Annual proportions of H1N1pdm viruses among swine influenza A viruses subtyped in France from 2009 to 2017

Yr No. of swIAVs subtyped No. of H1N1pdm viruses Proportion of H1N1pdm viruses (%)

2009 15 0 0
2010 53 4 7.55
2011 134 1 0.75
2012 134 2 1.49
2013 126 3 2.38
2014 103 3 2.91
2015 146 8 5.48
2016 172 21 12.21
2017 133 2 1.50

Total 1,016 44 4.33

FIG 1 Temporal distribution of swine H1N1pdm in France. The H1N1pdm viruses detected in pigs in France are individually represented by triangles positioned
on the time x axis (graduated monthly from April 2009 to January 2018). The first H1N1pdm virus isolated from a mammalian animal in France, i.e., a cat, is
represented by a black star. The lines represent the weekly numbers (y axis) of influenza A viruses (dotted line) and H1N1pdm viruses (black full line) detected
in humans in France during this period. Human data were extracted from the World Health Organization (WHO)/Global Influenza Surveillance and Response
System (GISRS) database (www.who.int/flunet).
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study did not correlate with the number of pigs reared in the area (Pearson’s R � 0.13),
in contrast to the total number of swIAVs (Pearson’s R � 0.96) (Fig. 2). Thus, in 2016, for
example, only 2 H1N1pdm viruses out of 125 swIAVs were reported in the most western
part of Brittany, where nearly 20% of pigs in France are produced, whereas H1N1pdm
viruses accounted for 9 out of 10 swIAVs detected in the far southwest of France, where
�2% of pigs are bred.

Phylogenetic analyses show that some recent French H1N1pdm strains iso-
lated in pigs diverge from contemporary human strains. Twenty-three H1N1pdm
isolates (dating from 2010 to 2016) were obtained from the 44 H1N1pdm-positive
swine batches after biological sample propagation in embryonated eggs or Madin-
Darby canine kidney (MDCK) cells, and 17/23 strains were fully sequenced (Table 2).
Additionally, sequences of the HA, or both the HA and NA, segments were obtained for
the other 6 swine isolates. All H1 genes were confirmed to belong to clade 1A.3.3.2,
which comprises H1 genes from H1N1pdm strains, using the “swine H1 clade classifi-
cation tool” of the Influenza Research Database (IRD) (32).

The whole-genome phylogenetic tree (Fig. 3), but also the HA, NA, and M phylo-
genetic trees (Fig. 4 to 6) as well as the other segment-by-segment phylogenetic trees
(data not shown), showed that H1N1pdm viruses isolated from pigs in France from
2010 to 2016 belonged to several genogroups among the H1N1pdm lineage. On the
basis of the initial classification proposed by Nelson and colleagues, who described the

FIG 2 Distribution of H1N1pdm viruses detected in pigs in France from November 2009 to 2017. The
map was colored in an orange gradient according to the size of the pig population in each administrative
department, based on data provided by the National Agricultural Census (56). The first mammalian
animal H1N1pdm strain isolated in France, i.e., the cat strain, is indicated by a black star. Each circle
represents an H1N1pdm virus strain detected in swine. Blue circles are isolates belonging to the
seasonal-like (SeL) group, red circles are isolates belonging to the swine divergent (SwD) group, black
circles are isolates belonging to neither the SeL group nor the SwD group, and white circles are isolates
that were not sequenced. The SeL and SwD genogroups were defined in this study. The map was drawn
using R 3.4.0 software (https://CRAN.R-project.org/package�maps).
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early genetic diversification of H1N1pdm viruses (33), the first strain isolated in pig in
February 2010, i.e., A/Sw/Cotes d’Armor/110466/2010, belonged to so-called “clade 3”
together with the strain isolated in cat in November 2009, i.e., A/Cat/France/0514/2009.
Subsequently, H1N1pdm strains obtained in pigs from November 2010 to the end of
2013 belonged to, or were derived from, clade 7 and clustered with their contemporary
human and swine counterparts isolated worldwide. From 2014 onward, a shift ap-
peared in the French swine H1N1pdm strains, which were divided into two genomic
groups (Fig. 3 to 6). In one group, identified as the “seasonal-like” (SeL) group, swine
H1N1pdm strains remained close to contemporary human strains (seasonal H1N1),

FIG 3 Bayesian inference tree of H1N1pdm virus strains from whole-genome sequences. Strains isolated from pigs (and a
cat) in France are indicated in boldface type. Nodes supported by more than 50% of sampled trees are indicated by a blue
bar displaying the 95% highest posterior density (HPD) intervals of the node heights. The SeL and SwD genogroups were
defined in this study. *, clades 1, 3, and 7 correspond to the classification of Nelson et al. (33).
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showing 99% identity by BLAST analyses irrespective of the genomic segment. In
contrast, in the second group, identified as the “swine divergent” (SwD) group, French
swine H1N1pdm strains were classified apart from any other human or swine H1N1pdm
strain, based on the sequences available in the different public databases. These strains
showed less than 97.5% identity with other H1N1pdm strains in the HA, NA, and NS
segments but still between 98% and 99% identity in other segments. Strains from the

FIG 4 Bayesian inference tree of the HA segment of H1N1pdm virus strains. Strains isolated from pigs (and a cat) in France
are indicated in boldface type. Nodes supported by more than 50% of sampled trees are indicated by a blue bar displaying
the 95% HPD intervals of the node heights. The SeL and SwD genogroups were defined in this study.
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SeL and SwD groups differed from an average distance of 0.03 substitutions/nucleotide
(nt), while the average distances from the reference strain A/California/04/2009 were
0.018 substitutions/nt for SeL strains and 0.02 substitutions/nt for SwD strains (Table 3).
Although the SwD group did not comprise any human strains, the most recent

FIG 5 Bayesian inference tree of the NA segment of the H1N1pdm virus. Strains from French swine or cat are indicated in
boldface type. Nodes supported by more than 50% of sampled trees are indicated by a blue bar displaying the 95% HPD
intervals of the node heights. The SeL and SwD genogroups were defined in this study.
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common ancestor was shared with strains involved in seasonal epidemics in 2010 to
2011 (Fig. 3). Swine H1N1pdm strains within the SwD group were identified in herds
that were located in the South of France, whereas swine strains from the SeL group
were detected in herds distributed throughout the country, similarly to H1N1pdm
viruses detected in the previous 2009 –2013 period (Fig. 2).

The molecular clock rate estimated from the whole-genome phylogenetic tree was
3.25 � 10�3 substitutions per site per year (95% highest posterior density [HPD]

FIG 6 Bayesian inference tree of the M segment of the H1N1pdm virus. Strains from French swine or cat are indicated in
boldface type. Nodes supported by more than 50% of sampled trees are indicated by a blue bar displaying the 95% HPD
intervals of the node heights. The SeL and SwD genogroups were defined in this study.
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interval, 3.05 � 10�3 to 3.47 � 10�3). The segment-by-segment molecular clock rate
displayed heterogeneous values. It appeared that the highest rates were observed in
the three most divergent genes identified in the SwD group, i.e., HA, NA, and NS, with
means of 3.98 � 10�3, 4.28 � 10�3, and 4.12 � 10�3 substitutions/site/year, respec-
tively. For the other segments, clock rates varied between 2.67 � 10�3 and 3.06 � 10�3

substitutions/site/year.
Swine H1N1pdm strains belonging to the SwD group accumulated specific

amino acid mutations. The numbers of amino acid mutations observed in swine
isolates from France with respect to the reference strain A/California/04/2009 are
reported in Table 4. Not surprisingly, the total number of amino acid mutations per viral
strain increased over time: strain A/Sw/France/65-160089/2016 contained 75 amino
acid (aa) changes, whereas A/Cat/France/0514/2009, the oldest strain isolated in a
mammalian animal, exhibited 15 mutations only. Only one exception was observed,
with strain A/Sw/France/71-130116/2013, which contained fewer mutations than
strains isolated in 2012. In all strains, HA was the protein that showed the highest
number of mutations. Nevertheless, proportionally to the protein length, the NS
proteins were the ones that accumulated the most mutations since 2015, followed by
the HA, NA, and M proteins (Table 4). According to the ratio of the number of
nonsynonymous substitutions (dN) to the number of synonymous substitutions (dS), all
proteins underwent strong purifying or stabilizing selection. The polymerase proteins
(PB1, PB2, and PA) exhibited the highest levels of selection pressure (i.e., lowest dN/dS
ratios), while N2 and M2 showed the lowest levels of purifying selection (i.e., highest
dN/dS ratios) (Table 4).

Comparison of swine H1N1pdm viruses isolated in France to A/California/04/2009
revealed that 18 aa changes have been fixed over the years. They were mutations
PA-P224S, HA-P100S, HA-T214A, HA-S220T, HA-I338V, NP-V100I, NA-N369K, and NS1-
I123V in strains isolated since 2010 and then PA-X-R221Q, HA-D114N, HA-S202T,
HA-S468N, and NA-V241I from 2012 and finally PB2-V344M, PB2-I354L, PA-X-N204S,
M1-V80I, and NS2-N29S since 2015. Among them, mutations HA-S202T and HA-S220T
localized in antigenic sites Sb and Ca1, respectively. Five other mutations, i.e., PB1-
G154D, PA-N321K, PA-X-L229S, HA-E391K, and M2-D21G, were observed in all swine
H1N1pdm strains isolated since 2012, excluding those belonging to the SwD group.

In contrast, strains from the SwD group were characterized by large numbers of
amino acid changes that were not inherited from older French swine H1N1pdm strains,

TABLE 3 Pairwise nucleotide distances obtained from whole-genome alignments of A/California/04/2009, A/Cat/France/0514/2009, and
swine H1N1pdm strains isolated in Francea

aThe gradient background color represents the increase in pairwise nucleotide distances, going from the smallest distance, in dark green, to the largest, in dark red.
Genogroups, i.e., clades or groups, of affiliations are those defined from phylogenetic analyses.
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going up to 59 new amino acid mutations in one SwD strain. Despite some strain-
specific mutations, all H1N1pdm isolates from the SwD group share 12 mutations not
observed to date in other swine H1N1pdm isolates and 15 mutations observed in �1%
of H1N1pdm haplotypes described in human or swine isolates worldwide (Fig. 7; see
also Table SA1 in the supplemental material). Among the mutations shared by all
strains within the SwD group, we observed that eight of them affected residues
involved in the polymerase protein domains: PB2-V480I, PB1-N213H, and PA-C241Y in
the nuclear localization signal (NLS); PB2-H127Y in the PB1-binding site; and PB1-
Q584K, D618N, S654N, and M744V around the PB2-binding domain. Three mutations
(HA-A3T, -V6A, and -F12L) were localized in the HA signal peptide, while many others
concentrated in the globular head of HA, including three mutations in antigenic sites,
i.e., N142D and G172E in the Sa site and A156D in the Ca site (Fig. 7). Importantly,
HA-G172E was not SwD group specific, as it was encountered in other H1N1pdm strains

FIG 7 Distribution and frequency of amino acid mutations in proteins from swine H1N1pdm strains belonging to the SeL and SwD genogroups, respectively.
Each bullet represents a mutation in strains from the SeL group (below the line) or the SwD group (above the line), in comparison with the amino acid sequence
of reference strain A/California/04/2009 (on the line). The bullet’s color represents the frequency level of a given residue among swine (color inside the bullet)
and human (color outside the bullet) H1N1pdm haplotypes available in public databases. Known protein domains or important sites are represented by colored
blocks on the reference line: the signal peptide (violet), the antigenic sites (green) inside the HA1 globular head, and the transmembrane domain (yellow) inside
the HA2 part for HA; the signal anchor (violet) and the stalk and catalytic domains in NA; two NLSs (cyan) in NP; the PB1-binding site (orange), two NLSs (cyan),
and the cap-binding site (yellow) in PB2; the PA-binding site (orange), two nucleotide-cross-linked regions, including two NLSs (cyan), the RNA-binding site
(yellow), and four polymerase motifs (in green) (inside and between the regions), three cap-dependent RNase active sites (positions 508, 519, and 522), and the
PB2-binding site (orange) in PB1; the protease-induced domain, including two NLSs (cyan), and the PB1-binding site (orange) in PA; the ribonucleoprotein (RNP) (gold),
including the membrane-binding site (orange), an RNA-binding site (green), and an NLS (cyan), in M1; and two secondary RNA structures (green) in NS1.
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since 2011, including three recent French strains that were classified in the SeL group.
Finally, strains of the SwD group exhibited mutation NP-D53E that was described and
suspected to be swine specific since 2011 (34, 35). This mutation, never observed in any
human strain, is shared by nearly 80% of swine H1N1pdm strains whose sequences are
available in databases, excluding those from the SeL group.

While several mutations observed in strains from the SeL group affected glycosy-
lation sites, such as HA-S179N (4/9 strains), NA-N44S (8/8), and NA-N386K (6/8), there
were only 2 strains out of 5 in the SwD group that were affected by changes in
glycosylation sites: A/Sw/France/12-150058/2015, which lost one N-glycosylation site
due to an HA-T295I mutation, and A/Sw/France/65-160089/2016, which acquired an
additional one due to an NA-S35N mutation.

Despite specific amino acid mutations in HA1, swine H1N1pdm strains from the
SwD group remain antigenically closely related to A/California/04/2009. As re-
ported above and as observed from alignments of amino acid sequences, several mutations
have been introduced in the major antigenic sites in HA1 since 2010 (Fig. 7 and 8). In order
to evaluate the consequences in terms of possible antigenic drift, especially regarding
H1N1pdm strains from the SwD group, we compared the reactivities of 17 swine H1N1pdm
isolates obtained in France from 2010 to 2016, as well as that of the cat strain obtained in
2009, to porcine hyperimmune sera directed against human or swine reference strains from
the H1N1pdm lineage, using hemagglutination inhibition (HI) assays (Table 5). The

FIG 8 Distribution of amino acid mutations in the HA1 domain of swine H1N1pdm strains isolated in France compared to reference strain A/California/04/2009.
H1N1pdm strains from the SeL group are highlighted in blue, and those from the SwD group are highlighted in pink. The SeL and SwD genogroups were
defined in this study. Strain A/Cat/France/0514/2009 was included as it was the first H1N1pdm strain isolated in a mammalian animal in France. Strains
A/Sw/Cotes d’Armor/0388/2009 (H1avN1) and A/Sw/Scotland/410440/1994 (H1huN2) were included as reference strains from other genetic lineages within the
swine H1 subtype. The antigenic sites Ca1, Ca2, Cb, Sa, and Sb (57) are marked in yellow.
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H1N1pdm isolates were also tested against reference sera containing antibodies to other
swIAVs from older European enzootic lineages, i.e., the H1avN1 lineage, the European
human-like reassortant H1N2 (H1huN2) lineage, and the European human-like reassortant
H3N2 lineage (13). The highest HI titers were obtained with antisera to both H1N1pdm
reference strains, i.e., A/California/04/2009 and A/Sw/Sarthe/0255/2010. Stronger reactions
were observed with antibodies directed against the swine strain (mean HI titer � 403.2
[range, 80 to 1,280]) than with antibodies directed against the human strain (mean HI
titer � 166.3 [range, 80 to 640]). Positive HI titers were also obtained with antibodies
directed against the H1avN1 strain, due to cross-reactivity between H1pdm and H1av (36).
However, HI titers against the H1avN1 strain were weaker (mean HI titer � 20 [range, �10
to 80]) than those for both H1N1pdm antisera. Similarly to reference strain A/California/
04/2009, the cat H1N1pdm and three swine H1N1pdm strains yielded HI titers of 20 with
the H1huN2 antiserum, probably due to slight cross-reactivity within the H1 subtype. In
contrast, no H1N1pdm strain gave a positive HI titer with the H3N2 antiserum. To better
evaluate the antigenic distances between H1N1pdm strains from the different genogroups,
HI titers were submitted to antigenic cartography, including all H1N1pdm strains and
reference antisera as well as the H1avN1 reference strain and antiserum (Fig. 9). All
H1N1pdm strains grouped around the two H1N1pdm reference sera. The viruses most
distant from reference antisera to A/California/04/2009 and A/Sw/Sarthe/0255/2010 were
A/Sw/France/35-140384/2014 (strain 13) and A/Sw/France/35-160233/2016 (strain 16), both

FIG 9 Antigenic map of French swine H1N1pdm from HI data. The relative positions of antisera (black
shapes) and strains (colored shapes) correspond to the adjusted distance of the HI measurement with the
least error calculated by ACMACS. The size of the shape represents the confidence area in the position
(0.5-U increase in total error). Black shapes represent antisera directed against strains A/California/04/
2009 (CALIF04), A/Sw/Sarthe/0255/2010 (SARTHE), and A/Sw/Cotes d’Armor/0388/2009 (H1avN1). Shapes
representing swine virus strains are colored as follows: blue for H1N1pdm strains from the SeL group, red
for H1N1pdm strains from the SwD group, green for other H1N1pdm strains from clade 7, yellow for
H1N1pdm strains from clade 3, and gray for the H1avN1 reference strain. The SeL and SwD genogroups
were defined in this study. Correspondences between numbers and strain names are given in Table 5.

Identification of a Swine-Specific H1N1pdm Lineage Journal of Virology

December 2018 Volume 92 Issue 24 e00988-18 jvi.asm.org 15

https://jvi.asm.org


from the SeL group. However, the antigenic distance was only 4 antigenic units (AU) and
was not correlated with amino acid changes in HA1 over the years. Strains from the SwD
group (strains 18 to 20) did not form a group apart from other strains and were not more
distant from reference strains than others.

Swine H1N1pdm strains belonging to the SwD group diverge from the
H1N1pdm lineage-specific pattern of the predicted RNA secondary structure in
the NS segment. As it was reported previously that the regions spanning positions 82
to 148 and 497 to 564 in the positive-sense RNA of the NS segment would display IAV
lineage-specific patterns in predicted RNA secondary structures, we compared the
predicted NS secondary RNA structures of swine H1N1pdm strains isolated in France to
those of reference strain A/California/04/2009 (37). As previously shown, NS RNA
secondary structures of IAVs from A/California/04/2009 fold into stem-loop structures
with internal loops and bulges (Fig. 10), resembling those found for swIAVs from North
American triple-reassortant and/or classical swine lineages (37). French swine
H1N1pdm strains from 2009 to 2011 harbored substitutions in the region spanning
positions 82 to 148 or 497 to 564, such as U127C in A/Sw/Sarthe/0255/2010 and
A/Sw/Sarthe/0262/2010, G538A in A/Sw/Cotes d’Armor/110466/2010, or A549G in
A/Sw/Haute-Loire/0578/2011, but none of these substitutions appear to influence the
RNA secondary structures (Fig. 10). Also, the two substitutions C108A and A558G fixed
in more-recent strains belonging to the SeL group did not provide any modification of
the predicted RNA structure. In contrast, substitution A129G observed in 3/5 strains
from the SwD group, as well as substitutions G537A and G532A harbored by all strains
from this genogroup, led to a change in predicted structures with the formation of
multibranch stem-loops in these two regions (Fig. 10).

DISCUSSION

In the present study, we investigated the diversity and evolution of H1N1pdm
viruses isolated in pigs in France from 2009 to 2017. Interestingly, this molecular

FIG 10 RNA secondary structures predicted in two regions of the NS segment suspected to be lineage-specific regions.
Only strains showing nucleotide substitutions compared to reference strain A/California/04/2009 are presented. Strains
A/Sw/France/12-160129/2016 and A/Sw/France/01-150203/2015 were used to represent the predicted RNA secondary
structures of strains belonging to the SeL and SwD genogroups, respectively. Nucleotide substitutions are indicated by
blue arrows.
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epidemiological survey led to the classification of some recent strains within a new
phylogenetic group which appears to be swine specific.

The first case of H1N1pdm infection in a French swine herd was recorded in
February 2010 at the time of the pandemic, as in other pig populations elsewhere in
Europe and worldwide (12–14, 38–40). Following the pandemic, the H1N1pdm virus
adopted a seasonal epidemic pattern in humans (11). However, H1N1pdm outbreaks in
pigs were again reported in fall 2010, before the 2010 –2011 seasonal epidemic started
in humans, leading to the hypothesis that the virus had circulated endemically among
swine since its introduction during the pandemic, as demonstrated at the European
level (14). Rapid and easy adaptation to the species after human-to-pig transmission
was sustained by the swine origin of the H1N1pdm virus itself (41). In addition to
intraspecies transmission, it is thought that separate human-to-swine H1N1pdm trans-
missions also occurred in France almost every year at the time of the seasonal
epidemics, as reported at the European level (14). Therefore, both intra- and interspe-
cies transmissions may have increased the annual proportions of H1N1pdm strains
detected in French pigs among other swIAVs, gradually from 2010 to 2016 and
regardless of the season.

Interestingly, in the northwestern part of France, which is the area with the highest
pig density and where 50% of herds were known to be infected with European H1avN1
and H1huN2 swIAVs for years before 2009 (42–44), a small number of H1N1pdm cases
were detected among swIAV-infected herds. The preexisting swIAV immunity, cross-
reacting with H1N1pdm, most probably reduced the transmission rate and the poten-
tial introduction success of the novel H1 antigenic variant in this area (36, 45). This
would explain why whole H1N1pdm virus seemed to circulate preferentially in French
areas less affected by other swIAV infections. This is also in accordance with the fact
that we did not detect any reassortant virus bearing the HA and/or NA gene of the
H1N1pdm virus in another swIAV backbone, whereas in several other European coun-
tries, such reassortants have become novel enzootic viruses early after the pandemic
(13, 14, 46–48). However, novel swIAVs bearing one or more H1N1pdm internal genes
in another swIAV backbone were first detected in 2014 and could further contribute to
the dissemination of H1N1pdm genes throughout the country (data not shown).

Most H1N1pdm strains isolated in pigs in France from 2010 to 2013 exhibited very
high similarity with contemporary seasonal human strains, and current phylogenetic
reconstructions were not able to easily distinguish viruses circulating in swine from
viruses newly transmitted from humans. However, the nucleotide mutations that
accumulated and fixed in swine viruses identified in France, compared to the initial
pandemic strain, provided evidence of the divergence of two phylogenetic groups from
2015, which we have called the SeL and SwD groups. The divergence was thought to
have occurred around 2011, suggesting that the gap resulted from limited passive
surveillance and/or subclinical infections. An active surveillance plan would be neces-
sary to better approach the real distribution of SwD strains in France. However, as these
strains were detected in several distant farms and over at least 2 years, it can be
hypothesized that they do not constitute a transitory emergence. The SeL group
included both swine and human strains isolated in France together with other swine
and human strains identified elsewhere worldwide, while the SwD group contained
only swine H1N1pdm strains isolated in the southern half of France. At the time of these
analyses, no other swine H1N1pdm virus could be classified with these French strains
in the SwD group. However, this specificity in France should be further confirmed, as
there were only seven swine H1N1pdm strains isolated in other European countries
from 2014 to 2017 that are available in public databases.

Strains from the SwD group accumulated a high number of mutations that were
rarely or never observed in H1N1pdm viruses previously. They were located in key
regions, such as the nuclear localization signals (NLS), cap-binding areas, or regions of
interaction between polymerase proteins, mutations that could alter virus replication
efficiency and/or virulence. Only one residue, i.e., NP-53E, was previously reported to be
related to swine-specific adaptation because of its high frequency in swine isolates and
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its total absence in human strains (34, 35). For the other 12 mutations never observed
in swine H1N1pdm to date, experimental investigations would be needed to evaluate
their involvement in host adaptation and virus functional properties. While several
mutations occurred in known antigenic sites, cross-HI tests and related antigenic
cartography showed that they did not cause antigenic drift in strains from the SwD
group, compared to those from the SeL group, those from the 2009 –2013 period of
time, and A/California/04/2009. However, if strains belonging to the SwD group further
persist in the pig population in France, and/or in other pig populations in Europe or
elsewhere, we could expect that they will continue to diverge from seasonal H1N1pdm
strains circulating in humans and/or from other H1N1pdm viruses infecting pigs. This
type of divergent evolution may lead to the emergence of viruses that would no longer
be covered by human vaccines and/or vaccines specifically developed for pig protec-
tion, based on antigens closely related to the original H1N1pdm virus.

Interestingly, all strains from the SwD group also fixed nucleotide mutations that
influenced the two lineage-specific regions of the NS segment RNA secondary struc-
ture, sustaining divergence within the H1N1pdm lineage. Although no specific clinical
sign and/or increase in the severity of respiratory disease in pigs was associated with
infections with SwD group strains, it would be informative to further investigate
potential group-specific phenotypic and/or functional characteristics. RNA secondary
structure modification could indeed impact the splicing of NS mRNAs and subsequently
regulate the expression of NS1 and NS2, two proteins that have important functions in
the inhibition of host antiviral gene expression and/or in viral replication (37, 49, 50).

Altogether, these results confirmed the importance of encouraging the surveillance
of IAVs in swine and the need to develop further comparative studies on H1N1pdm
evolution in both humans and swine, as a novel H1N1pdm swine-specific lineage could
present an increased risk to both human and swine health, either as a whole H1N1pdm
virus or in further reassortant viruses that will acquire genes from this novel genogroup.

MATERIALS AND METHODS
Biological samples. Nasal swabs (MW950Sent2mL Virocult; Kitvia, Labarthe-Inard, France) were

collected from pigs in France by veterinary practitioners, veterinarians from medical companies, or
personnel from the French Agency for Food, Environmental, and Occupational Health and Safety
(ANSES), from 2009 to 2017, in the context of diagnostic, passive surveillance or epidemiological
investigations in cases of outbreaks of acute respiratory disease. Nasal swabs were mixed vigorously, and
the supernatants were stored at �70°C until virological analysis.

H1N1pdm detection and subtyping. Initial screening for the influenza A virus (IAV) genome was
performed by local veterinary laboratories, by the French National Reference Laboratory for Swine
Influenza (Ploufragan, France), or by the Friedrich Loeffler Institute (Greifswald-Insel Riems, Germany). It
was carried out by a real-time RT-PCR assay targeting the matrix (M) gene, using either the LSI VetMAX
swine influenza A/H1N1/2009 kit (Life Technologies, Carlsbad, CA, USA), the Adiavet SIV real-time kit
(Bio-X Diagnostics, Rochefort, Belgium), or in-house methods (51, 52). Viral RNA extraction from 200 �l
of nasal swab supernatants as well as an amplification step were performed according to the manufac-
turer’s instructions. RNA extracts that were found to be positive for the IAV M gene were then subjected
to real-time RT-PCR assays developed for the specific identification of the HA and NA genes from the
H1N1pdm virus in swine samples (51, 52). The LSI VetMAX swine influenza A/H1N1/2009-H1 detection kit
(Life Technologies, Carlsbad, CA, USA) and the Adiavet A/H1N1 (2009) real-time kit (Bio-X Diagnostics,
Rochefort, Belgium) were used interchangeably to amplify the H1pdm gene, whereas the LSI VetMAX
swine influenza A/H1N1/2009-N1 detection kit (Life Technologies, Carlsbad, CA, USA) was used to amplify
the N1pdm gene (51). In-house RT-PCR assays specific for the HA or NA genes from other swine IAVs
circulating in France and/or in Europe were run in parallel to identify either swine IAVs other than
H1N1pdm, reassortant viruses, or virus mixtures (52, 53).

Virus isolation. Clinical samples positive for the H1pdm and/or N1pdm genes were subjected to
virus propagation on Madin-Darby canine kidney (MDCK) cells, according to standard procedures (54).
For swine antiserum production and antigenic characterization, reference viruses and/or swine
H1N1pdm isolates obtained on MDCK cells were further propagated in 9-day-old specific-pathogen-free
(SPF) embryonated chicken eggs. Harvested cell culture supernatants and allantoic fluids were clarified
by centrifugation and stored at �70°C until sequencing, pig inoculation, or hemagglutination inhibition
(HI) tests.

Sequencing. Viral RNA was extracted from MDCK cell-propagated H1N1pdm viruses using the
NucleoSpin RNA kit (Macherey-Nagel, Düren, Germany). The RNA sequences were obtained by either the
Sanger method or next-generation sequencing (NGS) (accession numbers are given in Table 2). For
Sanger sequencing, each viral segment was sequenced in both senses after being amplified in a two-step
RT-PCR using SuperScript II reverse transcriptase and Platinum Taq high-fidelity DNA polymerase
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(Invitrogen, Saint-Aubin, France), according to the manufacturer’s instructions. Sequences of forward and
reverse primers designed and/or used to amplify each H1N1pdm genomic segment are available upon
request. The sequences obtained were manually cleaned and assembled with Vector NTI Advance 11.0
software (Invitrogen, Life Technologies). For NGS sequencing, some viruses (labeled “NGS1” in Table 2)
were sequenced at the Sanger Institute, Cambridge, United Kingdom, within European coordinated
action ESNIP3 (European Surveillance Network for Influenza in Pigs 3), as previously described (14).
Briefly, viral RNA was amplified by using 8-segment RT-PCR, followed by whole-genome sequencing on
an FLX Titanium XL genome sequencer (Roche/454 Life Sciences, Branford, CT, USA) or a MiSeq
instrument (Illumina, San Diego, CA, USA), using a 150-bp paired-end reagent kit. The reads obtained
were de novo assembled using IVA version 0.8.1 and also against a reference sequence using SMALT
version 0.7.4. Other viruses (labeled “NGS2” in Table 2) were sequenced on the ANSES (Ploufragan,
France) NGS platform. The cDNA libraries were prepared using Ion Total RNA-Seq kit v2 (Life Technol-
ogies, Carlsbad, CA, USA) and sequenced on an Ion Proton instrument (Life Technologies). The resulting
reads were cleaned and first assembled by mapping on reference genomes using Burrows-Wheeler
Aligner software (version 0.7.15-r1140) and in addition were de novo assembled using the SPAdes and
MIRA programs (versions v3.10.0 and 4.0.2). The contigs produced by de novo methods were assembled
and compared to the alignment on reference genomes to generate a single consensus sequence per viral
segment using Vector NTI Advance 11.0 software.

Phylogenetic analyses. The sequences obtained in this study were compared to sequences re-
trieved from the Influenza Research Database (IRD) (available at https://www.fludb.org/). IRD sequences
were selected from the more similar sequences identified from BLAST searches, taking into account their
host species origin, i.e., both human and swine H1N1pdm strains, and their geographical location.
Sequences from H1N1pdm strains obtained in cats were also selected, irrespective of their percent
identity to French animal strains. For each RNA segment, coding region sequences were aligned in
Seaview with the MUSCLE algorithm. The eight alignments were then concatenated in order to build a
whole-genome tree and improve the estimation of the dates of divergence between the different
clusters. Phylogenetic trees were generated using a Bayesian approach using BEAST v1.8.4. For each
individual or concatenated alignment, we performed a maximum likelihood analysis with MEGA 7.0 to
select the best-fit substitution model according to the Bayesian information criterion (BIC). The
Hasegawa-Kishino-Yano (HKY) model was thus chosen for the phylogeny of the PB2, PB1, NP, M, and NS
segments, and the HKY�gamma model was chosen for the other segments (PA, HA, and NA) and for the
concatenated tree. Codon positions and collection dates were also incorporated into the BEAST models
to improve the phylogenies (55). A Markov chain Monte Carlo (MCMC) run of 10,000,000 generations
sampled every 1,000 was performed. The quality of the posterior distribution of each setting was checked
through the effective sample size (ESS) with Tracer v1.6. Trees were summarized with TreeAnnotator
v1.8.4 and visualized with FigTree v1.4.3.

Amino acid sequence analyses. DNA sequences were translated into amino acid sequences and
compared to the amino acid sequences of the reference strain A/California/04/2009 in Seaview. The
frequency of the appearance of each amino acid residue in proteins from H1N1pdm strains isolated in
swine was compared to that observed in human strains in order to determine whether some mutations
could reflect an adaptation of the virus to the swine host. To do this, amino acid sequences of H1N1pdm
virus strains isolated from humans and swine on each continent were downloaded from the IRD using
the options “H1N1 subtype,” “all complete segments,” and “2009 pH1N1 sequence only.” Due to the low
number of whole genomes from swine H1N1pdm viruses that were available in the IRD, swine H1N1pdm
strains registered on the GISAID platform (https://www.gisaid.org/) were added. Protein sequences were
analyzed with R 3.4, using the “seqinr” and “plyr” packages. After removal of duplicated sequences
representing single strains, identical sequences from several strains were grouped into alleles in order to
calculate the frequency of alleles sharing the specified residues.

Antigenic characterization and cartography. Swine antisera to H1N1pdm and other swIAVs of
European H1avN1, H3N2, and H1huN2 lineages, all selected by the French NRL as reference strains (13),
were produced in SPF pigs at ANSES facilities. Briefly, 9-week-old SPF pigs were inoculated intranasally
with 107 to 108 50% embryo-lethal doses (ELD50) of live virus (in a volume of 4 ml [2 ml per nostril]). Three
weeks later, the pigs were inoculated intramuscularly with the same dose of virus diluted (volume/
volume) in the adjuvant Montanide ISA206 (Seppic, Givaudan-Lavirotte, France) (total volume of 3 ml). An
exception was made for the A/California/04/2009 reference strain, which was inoculated twice intramus-
cularly with the adjuvant, as it was chemically inactivated. Antisera were collected 2 weeks after the
second immunization. Experiments were performed in accordance with the animal welfare experimen-
tation recommendations drawn up by the Direction Départementale de la Protection des Populations
des Côtes d’Armor (Departmental Directorate for Protection of the Population) (ANSES registration no.
C-22-745-1). They were approved by the French national committee for ethics in animal experimentation
(ANSES/ENVA/UPEC) (approval no. 15/02/11-5 and 12/07/16-1) and authorized by the French Ministry for
Research. Prior to HI testing, swine antisera were treated with a receptor-destroying enzyme (Sigma-
Aldrich, St. Louis, MO, USA) and then heat inactivated at 56°C for 30 min and adsorbed onto 50% chicken
red blood cells (RBCs) to remove nonspecific inhibitors of hemagglutination. HI assays were performed
by testing reference antisera against H1N1pdm viruses isolated from pigs and a cat in France, according
to standard procedures (54). Reference viruses used to generate antisera were also included as controls.
Briefly, 4 hemagglutinating units (HAU) of egg-propagated virus were incubated with two 2-fold
reference serum dilutions (starting at a dilution of 1:10) and tested against 0.5% chicken RBCs. HI titers
were expressed as the reciprocal of the highest dilution inhibiting 4 HAU of virus. Titers of �20 were
considered positive. Next, the antigenic distances between the different H1N1pdm viruses isolated in
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mammalian animals in France were mapped, using an antigenic cartography method previously de-
scribed for human and swine IAVs (31). The antigenic map was built in two dimensions (2D) using
ACMACS (University of Cambridge, UK [https://acmacs-web.antigenic-cartography.org/]). Distances for
antigenic dimensions are measured in antigenic units (AU), and each unit is equivalent to a 2-fold
dilution in HI assay data.

RNA secondary structure prediction. RNA secondary structures of NS segments were predicted
using the RNAfold Web server (http://rna.tbi.univie.ac.at/).

Accession number(s). The generated nucleotide sequences are available in GenBank. Their acces-
sion numbers are reported in Table 2.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JVI
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